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An angular momentum decomposition of the‘SchrBdinger equa-~
tion is extended to the case noted in the title. (The case of
three unequal mass particles is treated in an appendix.) The
decomposition is effected with the use of a symmetric choice of
Euler angles, and the radial equations are given in two useful
forms. The radial equations are shown to yield the Born-Oppen-
heimer equations for H2+ in the limit that the two identical
particles approach infinite mass. Other aspects of this limit
are discussed, and general rules which relate the total angular
momentum states of the three-body system with the molecular

+ .
states of Hy are examined.



I INTRODUCTION

In a previous reviewl we have presented a detailed investiga-
tion of the decomposition of the Schr8dinger equation for two iden-
tical particles, obeying the exclusion principle, in the central
field of an infinitely heavy center of force. This, of course,
is the prototype of the two-electron atom. The major correction to
this idealization is the recoil effects of the nucleus. It is
the primary purpose of this paper ti give the extension of the
above decomposition to include the finite mass of the previously
assumed fixed center. (The changes necessary in the radial equa-
tions for three unequal mass particles are given in Appendix B.)

The resulting decomposition is still sufficiently general to
allow an arbitrary mass to the identical particles as well as the
nonidentical third particle. As a rather different limit of this
system from the previous one, one can consider the limit in which
the two identical particles become infinitely heavy and the third
particle assumes the electron mass. This corresponds to the H2+
limit, and it is of considerable interest to see how the radial
equations and the three-body symmetries go over into the equations
and symmetries of the Born-Oppenheimer approximation in that case.

This is particularly relevant at the present time since the
absorption of M- mesons in hydrogen2 via the molecule (p - rr - p)
can presumably only be explained by the deviations of this ‘» mesic
counterpart of H2+ from the Born-Oppenheimer approximation3. The

+
Ho limit will be the subject of Section III.




II KINETIC ENERGY AND RADIAY, EQUATIONS

Let f; and [, be the coordinates of two identical particles,
each of mass m, in an arbitrary fixed coordinate system. Let
/’; be the coordinates of a third particle of mass M. The kinetle

energy can be written:

= - L vt 2 _ > (2.1)
T = 2 v ( r‘ 4 V(‘_ ) ;’LM Vf’

With the introduction of the difference vectors

(2.2a)

- B (2.2b)

and the center of mass coordinate 5:

i N MI
R = il & (2.2¢)
2m + M




the kinetlc energy becomes

2 2 ! v,
T = ~ ;—r\ ( A7 V.,_z) - .'_ﬁ V*| v‘}‘_ - m) R ) (2.3a)
where
™ M
e (2.4)

The last term in (2.3a) 1s clearly the kinetic energy of the
center of mass. In any closed system the potential will be independent
of R, so that the effect of this term will be to subtract a center
of mass energy, ECM’ from the total energy, ET’ to glve an effective
energy E for a Schrddinger equation with the last term in (2-58)&bS€T¢-
Thus we can replace the kinetic energy by an effective kinetic

energy governing the internal motion

‘n, W, (2.3p)




to be used with an effective energy

E = ET - EC.M (205)

Te now differs in form from the kinetic energy of the two-
electron fixed nucleus probleml by the addition of the final cross
term. This additional term is the well=known mass polarization term
which 1In most hellum applications is treated in perturbation
theory (which is quite adequate for the present experimental accuracy)%
We shall include the effect of this term exactly.

It will be recalled from I that the major task in effectlig
the decomposition 1s to find the kinetic energy in terms of the
Euler angles and residual coordinates in place of the particle
coordinates, We introduce formally the
same Euler angles as in I; namely © the angle between the space-fixed
z direction and f} X fg ~ Q', § the angle between the space-fixed
% airection, and 3 x 2 ~ X', and ¥ the angle between X' and (Fo-71).

kN

A
Now, since the form of Vr + vV s, 18 the same as in I, the

1 2

transformation of those terms in terms of the three Euler angles and
three residual coordinates can simply be taken over from I. We
need only consider therefore the remailning cross term, and since
we handle 1t in a very similar manner, we shall be mercifully brief.

In spherical coordinates the cross term 1s

Va, . Vo, = Cos8, ri + i L(u, ™ + v 2 )+ (lzz)}
- M 2 A, v, A, N, I



L {_0-3_1_ + &3 + [_C'?’: + (‘z_’.’-)]i (2.6)
Ry U, Re 3, 9%, ¢
where
W = Sint costy Cos (‘p,-qb,) —~  Cos?, Simh (2.7)
(2.8)

Vo= Sin ¥, s (P -9)
Sm vy

o - Cos? CosV, Cos(df, —4,) 4+ Ain ¥ SnP,

(2.9)

L = Cos (R -4 ) (2.10)
S, Sin Y

c = ces, S (4 ~4)) (2.11)

Sin vV,

When the residual coordinates are taken as r;, rz,0;», then the




transformation only involves first and second partial derivatives of
oqd o, P P with respect to 6, % , ¢, 635. (The
latter are referred to as X, , «=1 ...k below). The cross term

can therefore be written

4
VA V,“ = Cos @, 2 “ 2 [ 1 w 'B_Zd + > '3_}_,‘ _L
-t nan, “= %, ( K e )31‘31,_
: PR *
+ U-*z} + L { > a X % L L I
= W, J~=|Y- 2 2V, iq, %,
a‘L ~ ‘xx
sfle 2t ax 4 za)] X, o7 L ovBH
2% 3 % Y 1?0y
2 L S )
e 4 TR (e T L 02w) ) Y
2929, 9% 24,
(2.12)
4
YT Y Tal M oaxe 4 02} 4 e 2%
o 5 h =) AV, v 29 ¢



The results in the form of the coefficlents of the derivatives
with respect to X, expressed as functlons of 6,% , ¥, 635 are
given in Table I. Finally we can write the cross term as an operator
whose effect on the vector spherical harmonics have been fully

explored in I.

YV = Cos®, 2 - S 9 ( 3 4+ oL 2
= CLIS S n, %, N 2B, 1/
- S{v\B,,_ ')_ ('Q_ _ 1 ’L )
*, MmN 39, 1
. L - 4 2. _  CosB, N + CosB, -
Ryx, Smé, 28, t 10y Yy v

o4 (s\'n':.uy N, - cosag A

15“«3{6,1
L' +
+ Cos8, 3 4+ M )
2%in8,, e 5>

,\1 and ,\2 are given in (I64) and M® is the well-known total

(2.13)



angular momentum squared operator, (I4l), in terms of the Fuler angles.

The wave function is now expanded in the form (I55)

- " w+ (m,n)+
Vemlnom) = 2 L4 Cune 00y 9, 06,8 ,9)
"
(2.14)
n- (.MJM')-
-+ ‘glc"-\)"t;; en.) Zf (8, §, \P)j
() &

where Zl are the exchange vector spherical harmonics (I54),
the simltaneous eigenfunctions of MZ, M, and €,5. The operator

Y.*- v+ Va, as cxpressed (2.13) 1s now such that its operation on

*

these 32’""‘) functions can readily be found from (I65,66). Thus
the radial equatlons can simply be derived as an addition of terms
to what was derived in I. Below we shall give the equations in two
forms; the flrst in terms of simultancous coupled equatlons for the
1" ' 3K

radial” functions JC( (2, %e ,0u )

®+ -«
[Le,, + 2m (e-v) 14, - (L » J-._)[ i ICEDECE A
42 o A 1 5in 8y 4
"+ + (ned)+
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4Sn8), b Sih e, €

L e e G e - L EA
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+ ap n [ Cosdyy (l(£+ Wy - .nl—) - %* cos ®, - M $im }-.f*-v-
M ,l' hl 1 s,.:.e" ‘1 '-( {f;’eu- 'e
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»n (n.+1)+ r-2) +
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The numbers By, and B: arc defined in (I68), and S-wave
operator Lg in (I71). The fact that the equations are in this
12

first form are coupled for a given = 1implies that we arc dealing

with symmetric and antisymmetric functions

w+

24+4n  w+
:FQ (Mr v 580 = t Y ‘El (Peayny 9 ) (2.16a)
"= Len+y _ )
I, (nny,80) = 2 () § Ca, my i 8m) (2.16b)

where the upper sign refers to the totally space symmetric wave
function (singlet) and the lowcrt%he space antisymmetric solution
(triplet). The (anti) symmetry means that we can confine the solution
to half the r; - ro> plane with an appropriate vanishing of the func-
tion or its normal derivative along r; = rz (cf. Egs. (I72) and (I73)).

The second form of these equations that we shall give involves
the "radial" coordinates r;, rs, ri- and involves the asymmetric

functions Ekn and ii“

" w i n-
2.17a
Fl(“—n;"::"—n.) = ‘fz("-u"‘-‘/e'z) + e("l;*"l/ 612 ) ( 7a)
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< x “+ -~ (2.l7b)
Fl (r‘\)"z, i) = ‘S:Q (R Ry, ) = ‘;—Q(’L\,EL)S,L)
where, on the rhs, @15 1s understood to be expressed as a function
of ry, rz, rip through the law of cosines. By virtue of (2.16)
we have
o'} L+
Fg (’11,’!.; ,.‘12 ) = +* (_—\) Flu(h‘)’lz) h—n,). (2-18)
This relation enables us to write the equations in an uncoupled form
for a given = (the various u's are of course coupled to each
other) but in a domain covering the whole T, - rl prlane. It is also
convenlent in writing this second form to combine some of the terms
miltiplied by 2 . fM/M in (2.15) with L,  (given in (I81)) to form a
12
new S-wave operstor L'
T2
/
L"'-n. - i: r, + A @.L fe o + R [ g ?;:' "o
A, 2h R, 32 m ke 2N,
(2.19)
P N L Y A T N el i i
Aty 3R, dRyy o mg, Ty My ™M Mor, 3’?1'6’2,2.

We also use the quantity f
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The equations arc:

[laa + 2p (® —V)]an - (L
ﬁ" 'L:'

2
[ - (Rr-n) & LRy, (AT +’{';_)1

3 (2.20)
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2

*p

+ 8 L ('tlt“"’-: —"‘::. )i L+ — ™ _ .::: } F;
) r* Fatal
- Q(Q%-I) Ry § 'F"-v\ "_‘-_P_ ' 5 s %".u.

fL Y (e 2%

= © (2.21)
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IIT THE Hy' LIMIT

Consider the limit in which the mass of the two identical par-
ticles becomes infinite and the third particle retains its finite
mass. We shall call this the H2+ limit even though in a real H2+
molecular ion the two nuclel are not infinitely heavy and the system
should be described by the complete equatlions we have given in the

previous section. Mathematically this limit is defined by

m = Mp > oo (3.1a)
Moo= om (3.1p)

1im H- = m
M e
jY

e (3.1c)

The kinetic energy becomes

wm Te = —h (Y + % o+ 29 V%) (3.2)
Me >0




Letting

1
z = -5 (;+z) (3.3)
iz = L1 - Tz (3.4)
From (3.3) r is obviously the vector from the midpoint of the two
nuclei to the electron; we find for the effective kinetic energy:
"T" - ™ >
=-EF w (3.5)
2M¢
s0 that the SchrBdirger equation becomes
VY 4 dme( E — D4 = o
L. ¢ V)] (5.6)

[ .
This is, of course, the Born-Oppenheimer approximation for the electronic
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motion of H2+ .

The potential V, belng the attraction of the two nuclel considered
as fixed centers +to the electron, is not spherically symmetric.
As a result the total angular momentum of the electron is not con-
served but its z-component is (the z-axls being defined as the line

Joining the two nuclei). Appropriate solutions of (3.6) can there-

fore be written

A
¥ = e 4,4,\0:.,-.9),

where P and ¥ are the polar angles of b (the vector coordinate of

the electron). Substitution of (3.7) into (3.6) yields

e 5
LY oA + 2 Amy 2 - A + lﬁ‘(E-V)] {-f\ =0, (3.8a)
A nd KEaim b BV - PESF-EN Ll
where N =0, 1, 2, ... correspond to the T a1 A

k4 J

electronic states of H2+. The solutions can further be separated
into even or odd electron parity ( ¥ = wW—1 , @ 5 T + ¢ )

corresponding to gerade and ungerade classes.

Our purpose is to derive (3.8) from the radial equations of the
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three-body system in the Ho" limit. This provides not only a
useful check of the radial equations themselves, but it allows for
the verification of general rules which relate total angular momen-
tum states of the three-body system to their Born-Oppenheimer counter-
parts as one-body systems in an axially symmetric field.

We shall do this in the following way: we shall actually show for
the first couple of total s radial equations in the Ho* limit
that they reduce to the form (3.8) for specific values of A. This
will enable us to adduce a general relationship between total

2 - states and the Born-Oppenheimer electronic states

that they correspond to. Then we shall derive a formula relating
the parity of the molecular electronic state to the parity and
exchange character of the three-body wave function. |
A. y =0

From (2.21) in the limit defined by (3.1) we have

{

i,

+ 2me (E -V))F° (3.9)
t‘

"

where L'r12 is given in (2.19). The latter is seen to depend
differentially only on two coordinate: r; and r2. This is already
the seed of the Born-Oppenheimer limit which will be seen to apply
to all 1 equations.

Letting n= |.‘2_. (ny ’:’»")\ ; = X, amd § = A A 3
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we find

L2 -8 e ¥
T ™ ¢’ 2 > N o P 26> (3.10)

™
Now letting r = M scos $ = i_‘:l/;y] = S—&_ we find further

= LY m 4 A2 sinv 2L (3.11)
LT noan? AT pamg IV g
Thus (3.9) reduces to (3.8) for AN =o. Te  thef=0

radial equation reduces to that for § states in the Born-Oppen-

heimer limit.

The difference between the Y and higher A equations
consists of terms proportional to (r® sin 2 )™%. We need only note

the relation

™ ~I .
brg = (a* sinv) (3.12)

\
[ d
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so that the Born-Oppenhelmer equations in general can be written

{ 2 a
e - N oumn + ame (E-V)[$n =0
fa. -‘;t (5.8!))
B. £ =1 even parity
For £=1and = =o0, Eq. (2.21) reduces to
’ 2 (3.13)
[lan - 4% 4 2me CE-W]F° =0
f‘. -ﬁl
Comparing with Eq. (3.8b) we see that this 1s the Born-Oppenheimer
equation for T states.
c. £ =1 odd parity
We get from Eq. (2.20) for 4£=1, n=1
/ T - ™ 1 S
[Lh.,_ -+ Z—V_V\QCE_.V)] F'| _[ 2'}_@, + 1Ny +1~|.-,;:;' — h'l""-:: ]F"
% r:— L‘A“‘-,‘:— )‘L,h.,_f
kS 2 L.
+[ (mi-nr) = M (AT 4AT) L, AL -2 ) (AT 4nr -an)
m p ARTAT P
+ £ ( LY - s 2 )] E.' = O (3.15a)
IR, . n, R, I,
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It is also convenlent to derlve a redundant equation.

Letting
ry zz T2 in (3.15a) and using (2.18), we obtain
’ ~ . . - ~
\-L"n. + ame (E —V)J E‘ - [1_’11-'., + 2R 2AL-R, 4 RiI-R, ] r"
L - WRIAL Ak f

+ [ (ar=rl)= nE (AT4RY)

_ (h.‘;-&?)&’t?* Ry - aL)
EAD M A R T

. (3.15b)
mn anaL t
)
- £ ( L3 - 9 F = 0
2R R Ao 'b’L‘ h'l ﬁ't‘_ ) ]
In order to show the Born-Oppenheimer limit of these equatlions
we introduce the following transformation:
F! AP R (5.16)
s . {o( o
Flos il e 2 - B (3.17)
where
fa 4 = (y-al) f (5.18)

(At-a)* ="y + %)
This transformation has obviously not been pulled out of a hat.

Rather it corresponds to a transformation of the Euler angle®
which will be further discussed in the Appendix A,

We now make this transformation in (3.15). Multiplying the

transformed o{(3 /55) 67 ¢ and <1ddw|3 to 'H\C
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transformed of (3.15a) gives

l
B A LR L i H

Subtracting gives

’ '
[ LQ_'; -2 "-_!zx. + ime ( £ -~ V)] H__. - hn H,
1>

fa
Subtracting Egs. (3.19a) and (3.19b), we get

/

[L"'u + ime (E - V)J (H: - H-': ) =
*>

which according to (3.8b) corresponds to L states in the Born-

Opperheimer limit.

Adding Egs. (3.19a) and (3.19b) we get

/ a
[L"uz - Lf'l-_l_x + 1wme ( E—V)] (H', + H:., )
r "

which according to Eq. (3.8b) corresponds

(3.19a)

(3.19b)

(3.20)

(3.21)



- 22 -

to I states in the Born-Oppenheimer limit.

Therefore for 4 = 1 we get two [ states and one ¥ state.

D. # = 2, even parity

Eq (2.21) in this case involves the radial functions Fg, FZ,

~

and Fi. Making the transformation

o} i+i 2

FZ o x/.;) “O (3.22)
F? . H? iG 2 -ig (,

2 =1 2 € + H_2 e 3 23)
F? = HZ e inze'lOL (3.24)

yields three real equations for the functions HZ, HZZ, H;. One can
5 -
readily construct linear combinations of these equations which are

the 7., T, and A states of Hz+.

E. £ = 2, odd parity

Here one makes the transformation

F21 :-iH?eiq/z + H2 e-iQ/Z (3.25)
-1

. 2 .
~ = -H? elc“/2 + iH e—10/2 (3.26)
F] 1 =1
The resultant equations can then be shown in a similar manner to be
,+_
equivalent to 7] and A states of H2 .
Therefore, it can be shown that for s = 2, there are %, T, A

even parity states and for odd parity there are 1] and p states.
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This checks the well-known rule that for an arbitrary ¢ all
A states except A = O are doubly degenerate (positive-negative)é,
and for 5 states the parity of the £ equation which yields this

state is given by

(-1) by,
If one considers the finite mass of the nuclei, then the degeneracy
of the p # O states is lifted giving rise to the A - doubling

phenomenon . Our results also conform the rule6 A< k.

In order to facilitate the discussion of the P-r--r molecule

we also give the relation of the electronic gerade and ungerade

classes to the three-body symmetries. This relation is
iE = P €,

which can readily be verified two ways. First both the left and right
sides have precisely the same effect on the Hamiltonian, and second

if one starts with a spatial configuration of the nuclei and the
electron, then the operation of iE will yield the same final configu-

7
ration as ?8,1 .

A specific example of the above is provided by ¢ = 0 (there is
only even parity in this case) and the 4 = 1, odd parity cases. We

have shown gbove the radial equations in both cases approach the ¥

(3.27)

(3.28)
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equations of H2+. Nevertheless the vector spherical harmonic
portions of the complete wave functions are appropriate to f = O
and 4 = 1l respectively, and are hence different. The lowest

2 = o wave function corresponds to the ground Zg state of H2+,

whereas the lowest £ = 1 odd parity wave function corresponds to

the first excited rotational level of the Zg electronic state of

H
2

+. It is the latter state which in the |, mesonic counterpart
of H2+, namely the molecule p - | - p, is primarily responsible
for the absorption of |, mesons in hydrogen. The original calcu-

1ation9 which only corrects the Born-Oppenheimer approximation to

the extent that the error is reduced from the order —




(m v~/1\’fp)l/4 to the order (mp /Mp) givesa decay rate of about 560
sec”’ whereas the most recent experimental number> is 46k + U2 sec” .
That the bulk of the discrepancy is imfact due to the Born-Oppenheimer
approximation has been shown by a recent calculation of Wessel and
Pln'.l]ipson3 who attacked the problem as a three-body problem and
obtained a value of 480 sec-l. Their variational calculation did in
fact omit certain coupling terms in the radial equation but these
omissions are of the order of (my. /Mp)2. (It should be noted that an
accurate variational calculation has been made for this state in
which all terms in the radial equations have been includedlo. The
calculation was not primarily intended for this application.)
Furthermore, we see that the ground state, '2‘? , is gerade (iE = + 1)
and is derived from the £ = O equation which is necessarily even
parity ( ® =o ). From (3.28) it follows that &€,5 = + 1, so that
the three-body spatial function is symmetric and its spin antisymmetric
(singlet), i.e., a para state. On the other hand the capture takes
place from an 4 = 1 odd parity-state, the first rotational excited
state of the Yg electronic state which according to (3.28) is

€12 = -1, i.e., a triplet or ortho state. Since the eigenvalue

r
of Pis (-1) we can also write

LE = (-0 En (3.22)
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APPENDIX A

This appendix 1s concerned with the relation between the present

Euler angles and another set of symmetric Euler angles that have

2
been introducedll’l . This particular alternate set differs only as
concerns ¥ . ©Opecifically it is measured from the line of

nodes to the larger of the moments of inertis in the particle plane.
Letting gg be the alternative azimuth, our objective is to find
¥ as & function ¥ . We shall find that ¥, depends
additionally on r;, ¥> and ©55, the significance of which we shall
discuss further at the end of this appendix.
The alternative definition of the azimuth is glven in terms of
a ratlo.of products of inertia in a coordinate system measured with

respect to the center of mass. ILetting £ be these coordinates of

-~

the three particles , we find
5 = % + 5 3 j= b (8.1)
& = - _l“-"( Moty + Pa Ra) (A.2)

where By 1 =1, 2, 5, are the masses of the three particles and

3
po= Tk (A.3)
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3] ( ¢="2) are the vectors from the third particle to each of
the identical particles(although this analysis allows all three

masses to be different.) The components of the §, are defined

~

by

o= Vg + ¥ Sy (A.L)

where i’ and j' are unit vectors along x'- and y'- axes in the

particle plane. We have previously given, Eqs. (I15) and (I16),
A p

51 and %2 in the 1i°', 3' coordinate system. Substitution of these

relations into (A.1) and (A.2) gives the following relations for §. :

Ba = Lok mosnEe) e Ay s go (a.5)

Gy = -U‘*‘v—:) 7 COSLE ~ L8:) 4 t& my tosl¥+ 16,) (4-6)

. ) _% N S LE- Lon) U_\E) Ry S l¥+L8n) (A.7)

gzy = _’_‘_' n, Coes (@ - ‘Een_) - Q~ E}) R ceslE 4 is“') (2.8)
K (o
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(ST

R, Sin (& — )
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<|F

%2y = ]‘_;:1 k., Cos (q’/_;_.eu.)

1
The definition of % is given by'5

tam 2% = -2 Dxv
DX)‘ —)\/Y

where

3
:D"\/ = Z R §ix Gvi.\/
L=y

)X\( = Z t*u g"\/
L=t
3 R
3)7\/ - Z Wi By

*iT

n, Sin (¢ +

Substituting (A.5) - (A.10) into (4.12) - (A.14k) yields

L 6,)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

AJ1k)




tan 1% = [P. Q-1 AT sn(2d - 9na) Pa (1= B2y h.‘; Sin (1% + 6,)
- w "

S A, s.gz@]{_p.o-e_x_u)/: Cos (3 — 6,2)
B -

(A.15)
a -‘
+ [*a (l-\;‘_;) A, Cas(zt£+ 9.;) - 2kUr A A, Cos 1,*3
2 *
Specializing to Ho' 1limit, we have
B, = = M
1= Mo L,
Ha =m
> > - R o .
“‘tan ITD - [ +7% ) cose, —amnz] sm W} 4+ (e-n ) 2w, cosaiy
&-n) shonsmap [(W+ry) cosa,, = 20y ) Cos 2 ¢
= tan th?-r&) R . (A.16)

where
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tom o = (A < %) €inba

a
(‘t. +AY YcCes 6, - I

Using
Cos ey, = AT Ny —hn
E e TN W
we find
tam & = (3=-") 7

(=3 )? = AL (AT )

With the relation (A.l6) one can then transform the wave

function e

™, k

I'4
v
Y = T R.(n, he A (o
-~ ! TR .3,
ERChy ) %)

into our form Eq. (2.14), from which one derives the relation between

(A.17)

(A.18)

ta:19)

(A.20)
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x4+ n £
42 (and hence F, ) ang B .

The radial equations which result are consequently precisely
those that one would get directly from the formilae of Diehl et. al.”
in the H2+ limit. The siwaﬁhbify of their equations from the point
of view of this 1limlt stems from the fact that the axis to which

% 1s measured becomes identical with the line joining the nuclei,
i.e., the z-axis, in the Born-Oppenheimer approximation.

In the case of all finite masses, however, there arises an
additional group of terms in their equations. A comparison with our
equations indicates that in general their equations are more compli-
cated than owrs. In particular some of the coefficients have a more
complicated analytic behavior., We believe this is related to an ar-
gument in I which stated that because our Euler angles depend only
on the unit vectors §i and f; and not on the magnitudes of r; and rp,
we think our Euler angles are superior, for they retain the
separation between angular and radial parts which was implicit in
the expansion of the complete wave function itself (ef. (2.14) and
(A.20)). The suggestion that we are making here is that a concrete
manifestation of such a superiority may reside precisely in the
differences 1in the analytic structure of the respective radial
equations.

The dependence of q; on ry and ro is explicitly exhibited in
Egs. (A.16) and (A.l7). In Appendix 1III of reference 1 we derived

the relation between ours and the Hylleraas-Breit Euler angleslh’l5.
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The latter have the disadvantage of not being symmetrical, dbut
they too depend only on the unit vectors fl and x':z. Therefore
the relations between the respective Euler angles are independent
of r; and ro. According to the above argument we do not expect
any significant difference in the analytic properties of Breit's

15

(P state) radial equations as compared to our own.




Appendix B

For three unequal mass particles, the kinetic energy in the center

of mass system is

2 2
T == - A V“‘ - \ Vh. - _\_ N, B v/ . (B.l)
Py ot bl TV Mmoo ~
where
po= M (B.2)
w, +M
Po = M
(B.3)
™, + M
The Schrédinger equation in the c.m. system is thus
y Do+ 2
[+ B W+ B T vk (e-v] 2o
kS
(B.4)
It has been shown how the individual Laplacian may be written in terms
of the Euler angles and residual coordinates Ry o, My L, 8,
2 2
Vn, = -l!t— lzh.l + —l—i-{ A B smO, 2 + E(_e,§,\{/)} (B.5)
1k, 3 Sing,, 8, 26,
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kS s
G, = b 2 RN 2 S, 2 + } =6)
T AR YR L Vanen Ton T (e, £.v)

('™

where F3 and Fo are given in Egs. (I59, I62). Knowing then the effect
of F1, Fo and the cross term \ 'YL"’— on the vector spherical
harmonics via their representation in terms of the /\, > /\,_
~perators in (I63, 64) and (2.13), one may readily derive the radial
cquations for the general case. As coupled equations in terms of the

residual coordinates | R, ,6,2 , the radial equations are obtained

| by making the following substitution in (2.15):

ko> h, (B.7)
;
|
| - - B.8
LT T b, K (2.8)
L = ! .3\ b 2 M L 3..: L 3
e 2 be = T e R
T T AL ) 2 sine, 2 (B.9)
ot Mo R sing, 8, 26,

Since for m; 7L. n> the equations are no longer symmetric with

respect to ry Z2re, it is necessary to solve the equations for all values of r;
1 &2 ’
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and r> (as opposed to, say,r; j rz and an appropriate bound.a.ry
condition when m; is identical to mz). By virtue of this there
is no advantage in defining functions F"‘ and F f

as they will also be described by a coupled set of equations,
rather than & single equation (2.21) for the identical particle
case. For this reason we give below the equations in terms of

-+
the coupled. £ : = functions, but involving the coordinates

ry, Iz, Tiz.

- n+
- L e e VN I (GO R LS
3 h:’ Ra "\.: ri.
-+ _')_t_" - ‘\_:_"_‘-(":4‘ "‘1:.- ":-1) i &L +l)k‘;;‘*
4 :.rl
+2)+ r-)+
+ h.’!a. (’\‘-t- ’t; —"lz){ B "l ‘gt -+ (1-80m = §in + 81%) B‘L"‘ 'f }]
i
| - 'N- ,t| -+ "‘a.-,’l F 3
MR~ Sl i - P A AL
+  Ale+) §ie mha } .f. + ,,_.h’_ { B'n-n. (2=
r
NeD) o=
—-— ('-’gun - Sn( —-— sﬁ\‘.) BQ"_ ‘S‘e ) }]
+ 2k [{ (ry +nl _n,‘)( LR+N=-%> ) - L+ S .n..}.g T
my P gAML
x Gesary -2+
+ ua, { Bl” 4, " + (1=fn - S 4 fam) %

rt



k'S n -
- AR ?__ 4+ -~ - X, ! Q_ .S. = O
¥ ‘;_;tf’!- ( el ,‘l Dy Ahy RNia ‘b"n.) ¢ ']
(B.10)
] n- 2
2 - _ oy LR +1) = »+) 1M
Lbw ¥ 2l CE-n1I 5, = & )L ¢ oy
._.. n* + n.'z-.(n. +A% = AL S Lle) } 5,
S n (3 - (m=2)~
“t ’L_‘_’I;-L Lh:'\' 'L?;. - ’ln-){ (_l" S'u) & +2 -S-L * . 0— Sex "‘n‘, - S:.sq.) %‘” {'L .}J
af‘-
} e RE4 R -k + P 2 L +1) Sie A }._(:m'
“+ — - | ) . v % = 1% P - e A
L”T Ha :‘-:') L {" £ Ry M af ¢
r-y)+
(m+2)+ ]
- _,'ﬁf. { (l— de) B:.'-z ";'.e —_— Q— Son — S + gls\.) RL-& 2z }

+ A { Q":-i-’f;. -"371-) Q f_(&ill_-_l‘_ . . ) AL+ 8, hﬁ;}}z
m > FNTA f
3 f >
x+3) - (x=>)=
+ R, A-a.& (I Sou.) B“*z ‘;e -+ (‘- Sen = Ein —~ :"‘)Bl‘ﬂ- -g-{ .
Soaf (L3 - L2 4 M= L2 )4, 1 =0
L( h\h..‘_ &\' b'ﬂ,. ‘t‘ a"‘l— &| &'l- ’\‘\- zN'Il—
(8.11)
where
—l:, | ’31- A + h’_ | Dt A . H] | 31 n, + t‘_ 'h""lua."’\- 31—
) = — — o— m——— P o— > et ey
" r, ' Ma & 222 Kia A, 2% ™ AN M,
h ™ : ® [ b‘ 'Y +’\. _ ,{‘L‘ 3\
+ _“L" Ra +Ah, =-hy P + nd] \ > 2 . (B.12)
™, Ao oMy ua ™, MAy LA P




and

Pia = ™, ™ (B.13)

The resulting redial equations are invariant (except for a relative
phase factor which does not affect the eigenvalue spectrum) under the
simultaneous exchange of A, ? R, and W, z* m,. However the equatiwns
are not (formally)invariant under a simultaneous permutation of all
three particles (i.e., simultaneous cyclic permutations of m;, mp,
ms and ry, Tz, Triz2). This is apparently due to the fact that our
choice of Euler angles singles out one particle, the particle with
mass M, as the instantaneocus origin. This in turn means that the
line to which the azimuth ¥ is measured depends asymmetrically on which
particle we call the origin. As opposed to this the Euler angles of

12

Hoil.mbergl:L and Diehl et al.” are invariant under the operation, and

their radial equations are also.

Since, however, the transformation between the respective radial
functions can be worked out from Eq. (A.15), this additional symmetry
can readily be recovered. It would seem that a more practical criterion
of the utility of the equations is the analytic properties of the
equations themselves. In this respect the discussion near the end of

Appendix A may be more relevant.
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TABLE I
Coeffliclents of the Angular Derivatives in
the Cross Term of the Kinetic Energy.a'

-

Coefficient Derivative Coefficient Derivative
—cos @ 32 i -cot 6 sin 2 ¥ e
12 20,° ; sin® 0y5 0¥
cos 2 ¥ - cos 912: a2 - cos & (cos 655 + cos 2 V) 32
2 Sin£912 ‘a?. Si!lz e Sinzglg avoed
32 " cos 632 _ cot2e ( 2
- gin 012 PR : - "Iy \c05912+cos2‘1’i
0 .
61‘(:')3 12 N 2 8in“0;> g?-
£
Lo
- 2sin ® o L o
12 ( AraY N sin 64, ¢ 012
; ‘
- s ;
- S <12 o
+ % 8in 03 %araa‘i’ : 2—8—1?-9—1-2-(COS 2 ¥ + cos 6;5) 30
sin 2 ¥ 2 © -cot@sin2 ¥ LA
£in= 6y, sin © - 303% gin 6 sin® 05, . %
“ ! . B
" (cos 8yo+teos 2¥) 32 sin2y 2 3
T 281n®6;- sin“6 3% - 2 8in"6y5 1 + 2 cot® 9) "

aThe dependence on ry and rp is not included. All unincluded partial derivatives
have zero coefficients.



